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Simple lattice vortex models are presented that exhibit vortex percolation along 
lines in a temperature/chemical potential plane. Parts of these lines can be 
identified with the percolation threshold at the inertial range of turbulence, and 
other parts are analogous to the transition in a three-dimensional X Y  model 
that may model the 2 transition in superfluidity. Flory exponents at percolation 
are calculated; for nonnegative temperatures, their values approximate the 
standard Flory value, and are approximately constant along the transition lines, 
in agreement with recent conjectures. Conclusions regarding coherent structures 
in turbulence are also reached. 

KEY WORDS:  Vortex models; J(Y model; turbulence; superfluids; Flory 
exponent. 

1. I N T R O D U C T I O N  

Percolation phenomena have recently been identified in models of 
turbulence in classical fluids, (1) as well as in models of the critical transition 
in the three-dimensional X Y  model, (2'3) which may be a reasonable descrip- 
tion of the 2 transition in superfluidity. These percolation phenomena have 
some elements in common as well as some differences. The understanding 
of their mutual relation can contribute to the understanding of turbulence 
in both classical and quantum fluids. In the present paper we wish to 
contribute to that understanding by analyzing a simple vortex lattice model 
that exhibits a continuum of percolation states, some of which can be 
identified with turbulent percolation and some with superfluid percolation. 
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In the classical case, one considers a dilute "suspension" of vortex 
filaments, in thermal equilibrium, with the probability of a configuration 
being proportional to e x p ( - E / T ) ,  where E is the energy (the exact expres- 
sion is given below) and T is a temperature. T can be positive or negative, 
as in two-dimensional vortex dynamics. (4) For  T negative, the vortex 
filaments are smooth and the energy spectrum E ( k )  decays rapidly as the 
wave number k increases. For  T =  _+oo (the sign is immaterial) the energy 
spectrum has the Kolmogorov form E ( k ) ~ k  -~, ~ 5/3, and the vortex 
filaments have the structure of equal-probability self-avoiding random 
walks ("polymers"), characterized by the Flory exponent 0, 

( r L ) ~ L ~ large L 

where L is the length of a vortex strand measured in some appropriate way 
along its spine, rL is the end-to-end length of the strand measured by a 
straight ruler, and ( . . . )  denotes the appropriate average(S); 020 .59;  
D = 1/0 is the fractal dimension of the filament. The Kolmogorov exponent 

is related to 0 and to another exponent at T =  oo. For  T >  0, the vortex 
filaments are short, and the energy spectrum has the "equipartition" form 
E ( k )  ,,~ k 2 (for a definition, see, e.g., ref. 6). 

In the evolution of a flow, vortex filaments start out by being smooth, 
with T < 0 .  Vortex stretching lowers their temperature until T =  oo is 
reached. This is the maximum entropy state. For  Euler flow, the 
"polymeric" T =  oe state is an uncrossable barrier. In the presence of 
viscosity, or in underresolved or truncated numerical approximations, the 
barrier can be crossed; the T > 0  equilibria correspond to flows 
unconstrained by conservation of circulation and connectivity; they can 
exist physically in scales larger than the scale of the vortical structures in 
the flow. The polymeric case is a percolation threshold; on one side one has 
small vortex loops, on the other one has smooth vortex loops; at T =  oo 
one can have long, fractal vortex filaments. For more detail, see refs. 1, 7, 
and 8. 

A different analysis of the relation between 0, ~, and percolation has 
been suggested by Bershadski,(9) with very similar quantitative conclusions. 

In the X Y  model, a related argument has been made. ~2'3) In analogy 
with the two-dimensional Kosterlitz-Thouless transition mechanism, (1~ 
one assumes that in the superfluid phase, vortex filaments are small; as the 
transition to a classical fluid state is approached, they can become larger, 
and at the critical temperature they can become infinitely long, i.e., vortex 
percolation (defined below) occurs. The temperature Tc of this 2 transition 
is related to the energy of elementary vortex loops, and the assumption 
that, at the transition, vortex filaments have a polymeric structure yields 
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critical exponents consistent with experiment. The expression for the energy 
is the same as in the turbulent case. However, the temperature of the 2 
transition is small and positive, and thus far from infinite. One thus seems 
to have two different critical points, one at a low and one at a high 
temperature, with similar geometric properties. 

It is important to understand the relation between these percolation 
thresholds. Such understanding would greatly add to the understanding of 
superfluid turbulence, and would have a strong bearing on the applicability 
of real-space renormalization group techniques, such as the Kosterlitz- 
Thouless analysis, to vortices in classical turbulence. In the present paper, 
we examine this relation in a simplified lattice vortex model that exhibits 
both types of percolation. The model also leads to interesting conclusions 
regarding screening in classical turbulence and the role of coherent struc- 
tures. It suggests ways of analyzing dense suspensions of vortices and of 
polymers. 

For  the sake of clarity, we begin with a very simple model of turbulent 
percolation that has some interesting features and serves as an introduction 
to the main model. 

2. A N  I N D E P E N D E N T - L O O P  M O D E L  

Consider a two-dimensional square lattice, of bond length 1. A lattice 
site has coordinates ( i , j ) ,  i, j E Z ;  a typical square Ai, j has sides that 
connect ( i , j ) ,  ( i + l , j ) ,  ( i + l , j + l ) ,  ( i , j + l ) ,  (i , j) .  An elementary 
"microscopic" vortex loop coincides with the sides of a typical square and 
is oriented clockwise (Fig. 1). If two adjoining squares contain vortex 
loops, the vortex lines on their common edge cancel and one obtains a 
longer vortex that coincides with the boundary of their union; similary 
with a larger number of adjoining loops (Fig. 2). Note that even though the 

(i , j  + 1) (i + 1,j + 1) 
> 

\ /  

< 
(i , j)  (i + 1,j) 

Fig. 1. An elementary vortex loop. 
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Fig. 2. Elementary vortex loops coalesce. 

"vorticity" field thus constructed lies in the plane, the resulting "velocity" 
field, assumed given by the Biot-Savart law, is three-dimensional. In par- 
ticular, two-dimensional Kosterlitz-Thouless analysis (11) does not apply. 
We shall henceforth omit the quotation marks around the word "vorticity" 
and refer to a lattice bond that contains a vortex segment as a vortex leg. 

Go from square to square on the lattice, and with probability p place 
a microscopic vortex on each square, and with probability 1 - p  leave the 
square empty. Trace out the macroscopic vortex loops, which are the 
boundaries of connected blocks of occupied squares. Note that if an empty 
square is surrounded by occupied squares, the resulting macriscopic vortex 
is oriented anticlockwise, and thus, even though the microscopic vortices 
have a single orientation, the resulting macroscopic ones can have either 
one.  

If there are vortex loops at Ai, j, Ai+l , j+l  while Ai+l,j, Ai, j+l are  

empty, there arises an ambiguity as to how the macroscopic vortices are to 
be connected. We adopt the following convention: if ( i+j)  is even, a loop 
at Ai, j is connected to the loops that may be present at Ai+~,j+~ and 
A~_I,j_I (i.e., to the northwest and southeast) and not connected in the 
two other diagonal directions. If (i + j )  is odd, the possible connections are 
to the northeast and southwest (Fig. 2). 

The first question to ask is the following: In what values of p can one 
have an infinitely long macroscopic vortex? (If such a vortex exists, we say 
that we have vortex percolation.) An infinitely long vortex surrounds an 
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infinite cluster of connected occupied squares. With the rules we have set 
up, the existence of such a cluster is a site percolation problem on the 
lattice of Fig. 3, and by a standard transformation (12) becomes a bond per- 
colation problem on a square lattice. Thus the infinite cluster exists almost 
surely for p > 1. In addition, for a vortex line to be infinite, the complement 

1 of the set it surrounds must be infinite, and this happens for p < ~. Strictly 
speaking, vortex percolation never happens, but at p =  �89 one can have 
vortex lines of arbitrary lengths. Similar situations are described in ref. 12. 
In Table I we exhibit the average vortex lengths in a 40 x 40 lattice as a 
function of p; the results are symmetric around p = �89 and the average 
length diverges at p = �89 when n increases. We shall refer to p = �89 as an 
approximate percolation point, or a percolation point for short. 

This conclusion can be expressed in terms of a temperature T. Let 
/~>0 be an energy associated with a microscopic vortex loop. For  a 
system with few loops, # is the chemical potential. The probability of a 
loop being present in a thermal equilibrium at a temperature T is 
e-~/T/(1 + e -~/r) = p, and thus p = �89 corresponds to T =  oo. Percolation is 
approached at an infinite temperature as in the turbulent vortex case 
discussed in the introduction. For  T <  0 a random system does not describe 
well the distribution of smooth vortices, and for T > 0  there are no 
infinitely long vortices in either the turbulent case or in the present model. 

Note that at p = �89 the entropy of the lattice vortex system is maximum. 
It is tempting to associate this observation with the observation in refs. 7 
and 13 that the entropy of a vortex system is maximum at the percolation 
threshold. One should, however, note that the system considered here and 
the one in refs. 7 and 13 are different: here one considers the states of a 
fixed lattice, while the in the other papers one considers the states of a 

)< 
)< 

)< 
Fig. 3. Equivalent site percolation problem. 
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Table I. Average Vor tex  Length 
as a Function of the Probabi l i ty 

p, 40 x 40 latt ice 

p Average length 

0.35 11.485 +__ 0.005 
0.40 15.48 +0.01 
0.45 22.68 __0.01 
0.5 32.29 __+_ 0.002 

self-avoiding walk of a given length, with bonds not on the walk not being 
considered as parts of the system. The two maximum-entropy statements 
may be related, but the relation is not clear. 

Note that at p = �89 ( T =  oo) large macroscopic vortices can appear and 
look coherent, even though the system has no long-range correlations. In 
Fig. 4 we exhibit some vortex lines generated by the model, with vortex 
loops of less than 8 legs deleted. This figure illustrates the statement that 
there may well be much less coherence in turbulence than meets the eye. 
There are indeed mechanisms in fluid mechanics that create coherence (see, 

Fig. 4. Vortex lines at percolation. 
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Table I1. FIory Exponent in Independent- 
Loop Model 

n 0 :V 

20 0.603 _+ 0.01 68.9 _+ 0.03 
40 0.612 _+ 0.008 217.9 + 0.2 
60 0.612 _+ 0.008 438.6 +_ 0.3 

7 3  

e.g., ref. 6), but the resulting order may well be weak. For  discussions of 
this coherence/disorder issue in the context of a boundary layer (often 
thought of as partly coherent) see, e.g., refs. 14 and 15. 

Near the p = �89 percolation point, one can readily evaluate the expo- 
nent 0 for a long vortex. All one has to do is locate the intersection of the 
vortex with the sides of an n x n box, calculate the distance r N between 
these points and the number N of legs of the vortex between them, and 
carry out the appropriate averaging. In this algorithm, N is variable; since 
the average of a log is not the log of the average, one has to be careful to 
caculate <rN> for each N, then calculate l o g < r u ) / l o g N  , and only then 
average over N. In addition, data points that come from N small ( N <  n) 
are disregarded. We omit all the other details of how percolating vortices 
are found; all the necessary information can be found in Stauffer. (16) 

In Table II we list calculated values of 0 in lattices of various sizes. 
We also list the average number N of legs in the percolating vortices. 
~7 increases faster than n, since the percolating vortex is fractal. The 
calculations turn out to be quite costly since the algorithm, by construc- 
tion, requires O(_N ~) operations to generate a new vortex, with /~> 1. 
The conclusion is that there is a 0 independent of N, with 0 near 0.6, 
amazingly, and probably fortuitously, close to the Flory three-dimensional 
value. Thus, even the present independent-loop model exhibits some of the 
structure of the three-dimensional vortex statistics problem. 

3. THE ENERGY OF A VORTEX SYSTEM 

In order to prepare for the next model, we present a brief discussion 
of the energy of a vortex system, following refs. 7 and 13. 

Consider a collection of vortex tubes in an unbounded region. Its 
energy is 

1 %(x). %(x') 
rx-x'l 
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where u is the velocity and ~ = curl u is the vorticity. Suppose the support 
of ~ consists of I cylinders I~, i = 1, l, arranged so as to approximate a finite 
number of closed loops, with ~ approximately constant in each tube and 
parallel to its axis. Then 

where 

E~"~(~i ~iEij~-~iEii) 

Eo= f dxf dx ' ~ ( x ) ' ~ ( x ' )  
,~ ~ t x - x ' l  

Suppose all the tubes have circulation 1. Let t~ be a vector on the axis of 
Ii, in the same direction as ~ in Ii, with fte[ = length of Ii. Let li-jl denote 
a distance between I i and Ij. If [i-j[ >> max(It~l, [tjl), one has 

Eo~-li_jl 

Accept this approximation whenever i C j  (this is reasonable whenever l is 
large). Drop the immaterial factor (8re)- '. Then 

E~-~ ~ [i-j[ +~ Ei~ �9 j~i 
Eli is a function of the radius r of Ii, dEJdr < 0, lim r_, 0 Eii= ~ .  The 
scaling laws obeyed by E~(r, Itil) have been examined in ref. 7. Assume all 
the Ie have the same radius r and the same length; then Ei~ = const = q, and 

t s ' ~  

A choice of q is a choice of r if ]til is given. A choice of q determines the 
energy of a microscopic vortex (its chemical potential when there are few 
loops), assuming (1) holds: 

# =  - 4  + 4q 

In this approximation,/~ > 0 implies q > 1. 

4. A LATTICE M O D E L  W I T H  3 x 3  I N D E P E N D E N T  B L O C K S  

The next model we consider is one in which the loops interact and the 
configurations have a probability that depends on the energy of the vortex 
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system. A general model of this type (equivalent to a three-dimensional XY 
model) will be considered elsewhere. For the present, we shall be content 
with a model in which the vortices remain in the plane and the loops inter- 
act in 3 • 3 blocks, different blocks being independent. Even this simple 
problem is not computationalty inexpensive. 

Consider a 3 x 3 block of loops, and the resulting vortex lines. The 
energy of a configuration C of the block is given by (1); if one denotes 
the double sum by El=El(C), the energy is EI(C)+I(C)q, where 
l=l(C) is the number of vortex legs. Write q=qo+Q, where qo = 
-minc(El(C)/l(C)) = 1.12449. Then Q >~0 implies E~>0 for all the 512 
configurations C. The partition function for the 3 x 3 system is 

Z = ~  exp{-/3[E,(C)+l(C)(qo+Q)]}, /3= T-'  
C 

and the chemical potential is # = 4(qo + Q ) -  4. The probability of a given 
configuration C is 

P(C) = Z  - 1  exp{ -/3[E, + l(qo + Q)]} (2) 

One can readily check that if fl = 0, when all configurations are equally 
likely, {=_ Z l(C) P(C) = 12. Given/7 :~ 0, P(C) is a function of Q; the equa- 
tion [=/(/3, Q ) =  12 can be solved and yields the dashed curve in Fig. 5. 
This curve and the Q axis divide the (/3, Q) plane into the four regions I, 
II, III, and IV. In I and III,/(/3, Q) > 12; in II and IV,/(fl,  Q) < 12. (Note 
that as/3 varies from 2.5 to 0, and then to -2.5,  T varies from 0.4 to 0% 
and then from - ~  to -0.4.  Since a positive temperature is "colder" then 
a negative temperature, T is monotonically increasing.) The heuristic 
meaning of Fig. 5 is quite clear: an increase in Q, i.e., in the cost of produc- 

II 

1 

I I 

3! 
2 

-2  

III 

Q 

I 

I I 

IV 

> 

Fig. 5. Percolation loci in block model. 
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ing vortex legs, decreases the average number of legs if T > 0 ,  and the 
converse is true when T <  0. On the other hand, [ is  larger than it would 
be with E1 = 0, thus vortex folding, i.e., the creation of counterrotating 
nearby loops, can make up to some extent for an increase in Q; see the 
discussion in refs. 7 and 13, and the Kosterlitz-Thouless analysis. {2'3) 

We now construct a lattice model with interaction by picking the 
lattice size n to be a multiple of 3, and then in each 3 x 3 block picking one 
of the 512 configurations with the probability (2), two different blocks 
being independent. The natural conjecture is that there will be percolation 
near the curves [=  12 of the 3 x 3 blocks, since if there are too few vortex 
legs there will not be enough of them to make up a long vortex, and if 
there are too many they will join locally into smaller structures. We already 
know that percolation occurs at [=  12 for the independent-loop model. The 
percolation points are not likely to coincide exactly with the curves [=  12 
because the overall lattice is not truly the union of the blocks, in particular 
since overlaps can occur at their edges. The solid curve in Fig. 5 and the 
Q axis are the percolation loci in the (/~, Q) plane. One can thus go 
through a percolation state by going from positive to negative T (as in the 
last section) or by reducing Q. Either motion in the (/~, Q) plane increases 
the density of vortex legs and at an appropriate point the legs coalesce into 
long vortices. The fact that the superfluid percolation curve is below the/~ 
axis (and thus the energy of some configurations is negative) is an artifact 
of our model, which, by excluding long-range interactions, emphasizes 
configuration of low energy. The percolation locus can be moved up by 
changing the boundary conditions in the 3 x 3 blocks. There may possibly 
be some significance in the fact that the curve is sloping downward. It may 
be that the most physical part of that percolation locus is on the left, where 
the temperature is low. 

One can thus reach percolation (and a critical transition) by reducing 
the temperature from negative to positive, or by reducing the cost of 

Table III. The Flow Exponent 0 along 
the Percolation Loci 

/~ Q 0 

2.5 -0.1069 0.63 + 0.01 
2.0 -0.1512 0.62 -I- 0.01 
1.5 -0.2314 0.62 + 0.01 
0.5 -0.9067 0.60 _+ 0.01 
0 Indeterminate 0.61 ___ 0.01 

- 1.0 - 1.8660 0.69 _+ 0.01 
-2.0 - 1.8521 0.70 __+ 0.01 
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producing vortex legs. The latter can be done either by reducing Q or, at 
low enough Q, by varying T. The second option is more reasonable at low T. 
One can plausibly identify the percolation on the line/? = 0 with turbulent 
percolation and the percolation along the nearly horizontal curve with 
superfluid percolation. 

In Table III we display some values of 0 calculated along the horizon- 
tal percolation curve. (Along f i = 0  the configurations we generate are 
indistinguishable from the ones of the independent-loop case and 0 is con- 
stant.) The variation of 0 for /~ ~> 0 is slow, and may be due to statistical 
error. These results do make it plausible to assume that the Flory exponent 
varies little along the percolation loci for/3 ~> 0 and thus that is reasonable 
to use the same 0 in the X Y  model and in turbulence theory. 

5. C O N C L U S I O N S  

The simple plane model of vortex filaments exhibits a percolation 
structure similar to what had been observed in turbulence modeling and in 
superfluidity. In particular, it makes plausible the idea that at the inertial 
range of turbulence and near the critical point of the X Y  model the fractal 
structure of the vortex filaments is similar. 

In one important respect, the model is more realistic than the models 
in earlier work: as can be seen from Fig. 4, the model allows for a dense 
rather than only a sparse "suspension" of vortex lines. This added element 
of reality, albeit with simplified interaction, suggests that percolation 
models can provide a useful tool for the study of dense' collections of 
polymers, vortices, and other stringlike objects. 

Most importantly, the results presented here suggest that the analogy 
between the inertial range and the neighborhood of the 2 point presented 
in ref. 8 has substance. The differences between the two are great; in 
particular, in a turbulent fluid, the temperature is determined by vortex 
stretching, varies in time, and is generally negative, while in a superfluid, 
vortex stretching is not a major factor (and thus Euler's equations do not 
apply), and the temperature is externally imposed and positive. On the 
other hand, the geometry of folding and screening may well be very similar 
and real-space renormalization group techniques may be applicable in 
similar ways. 
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